Studies related to carba-pyranoses: a strategy for the synthesis of β-1,3-glycosidically linked aminomonocarba-disaccharides ${ }^{1}$

David S. Larsen, ${ }^{* a}$ Roger J. Lins, ${ }^{a}$ Richard J. Stoodley ${ }^{b}$ and Nicholas S. Trotter ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
${ }^{b}$ Department of Chemistry, UMIST, PO Box 88, Manchester, UK M60 1QD

Received (in Cambridge, UK) 19th June 2001, Accepted 19th July 2001
First published as an Advance Article on the web 23rd August 2001

The reaction of (E)-1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)-3-(trimethylsiloxy)buta-1,3-diene $\mathbf{1}$ and maleic anhydride gives cycloadduct $\mathbf{1 0}$ and ketone $\mathbf{1 2}$. Reduction of ketone $\mathbf{1 3}$, formed by acidic hydrolysis of silyl enol ether 10, with sodium cyanoborohydride in acetic acid gives an $83: 17$ mixture of the γ - and δ-lactone $\mathbf{1 4}$ and $\mathbf{1 5}$. γ-Lactone 14 is transformed into the aminomonocarba-disaccharide, 4-acetamido-2,4-dideoxy-3-O-(β-d-gluco-pyranosyl)-5a-carba- β-L-lyxo-hexopyranose 7 , using a five-step procedure involving the Curtius rearrangement of acyl azide 16. A similar sequence using γ-lactone 21, prepared from ketone 12, gives the protected aminomonocarbadisaccharide, 4-acetamido-1,6-di- O-acetyl-2,4-dideoxy-3-O-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyl)-5a-carba-β-d-lyxo-hexopyranose 8 .

Reaction of cycloadduct $\mathbf{1 0}$ with dimethyldioxirane gives acyloin 26. Acetylation under acidic conditions followed by reduction with sodium cyanoborohydride in acetic acid gives a $75: 25$ mixture of the γ - and δ-lactone $\mathbf{2 8}$ and 29 . Using a sequence similar to that employed for the preparation of compounds $\mathbf{7}$ and $\mathbf{8}, \gamma$-lactone $\mathbf{2 8}$ is converted into the fully substituted aminomonocarba-disaccharide, 4-acetamido-1,2,6-tri- O-acetyl-4-deoxy-3-O-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O -acetyl- β-d-glucopyranosyl)-5a-carba- β-L-galactopyranose 9 .

Introduction

Over the past few years, we have shown that anomerically linked glycopyranose units can confer a useful degree of facial reactivity on 1 -oxybuta-1,3-dienes in cycloaddition reactions. ${ }^{2-9}$ For example, the diene $\mathbf{1}$ displays good $R e$-face reactivity and undergoes highly endo-selective Diels-Alder reactions ${ }^{2,3,5}$ with cyclic dienophiles of type $\mathbf{2}$ to give predominantly cycloadducts of type 3. As well as endeavouring to understand the basis of the stereoinduction, we have sought to employ such cycloadditions in the assembly of compounds of biological relevance. Within the latter context, asymmetric syntheses of anthracyclinones, ${ }^{2,5}$ bostrycins, ${ }^{6}$ dehydropiperazic acids ${ }^{7,8}$ and 5 -arylpentopyranoses ${ }^{9}$ have been effected.

In the aforementioned syntheses, the glycopyranose moiety served a 'chiral auxiliary' role, being removed from the pretarget structures by mild acidic hydrolysis. Mindful of the emerging importance of saccharides in medicinal chemistry, ${ }^{10,11}$ we have also sought to prepare oligosaccharide-like compounds that retain the glycopyranose unit. Within this framework, monocarba-disaccharides that feature a pyranose entity glycosidically linked to a carba-pyranose moiety have attracted our attention. Such assemblies, which are found in some aminoglycoside antibiotics, e.g. validamycin A 4, ${ }^{12}$ have been the subject of relatively few synthetic endeavours.

We planned to use Diels-Alder reactions to construct such monocarba-disaccharides and initially decided to employ the readily available diene $1 .{ }^{2,3}$ In consequence, any targets would feature a β-d-glucopyranosyl unit. Noting that few acetallinked $(1 \rightarrow 3)$-monocarba-disaccharides had been synthesised ${ }^{13}$ (examples include compounds 5 and $\mathbf{6}^{14}$), we decided to prepare further representatives of this group. Earlier, ${ }^{1}$ we communicated our initial findings where we synthesised 4-acetamido-2,4-dideoxy-3-O-(β-d-glucopyranosyl)-5a-carba- β -L-lyxo-hexopyranose 7. This paper describes those findings in full and extensions to that work which culminated in the syntheses of a relative with the D-lyxo configuration, i.e. $\mathbf{8}$, and
a fully substituted monocarba-disaccharide, i.e. 4 -acetamido-1,2,6-tri- O-acetyl-4-deoxy-3- O-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyl)-5a-carba- β-L-galactopyranose 9 .

Results and discussion

The strategy employed for the synthesis of $(1 \rightarrow 3)$-linked monocarba-disaccharides would require that $\mathrm{C}-5$ of cycloadducts, typified by 10, would become the pseudo-anomeric centre of the carba-pyranose ring. This necessitates that the anhydride carbonyl function at C-1 be selectively reduced to a hydroxymethyl group and that that at C-2 be replaced with heteroatom functionality. With respect to the latter issue, it was envisaged that amino functionality could be introduced with retention of stereochemistry using the Curtius rearrangement of a derived acyl azide. Oxidation of the silyl enol ether group and reduction of the resulting α-hydroxy ketone would serve to install the 1-and 2-hydroxy groups.

In this study, conducted on a $\approx 50 \mathrm{mmol}$ scale, diene $\mathbf{1}$ reacted with maleic anhydride in benzene ${ }^{3}$ to give a $3: 1$ mixture of the two cycloadducts $\mathbf{1 0}$ and 11. Trituration of the crude product with diethyl ether afforded cycloadduct $\mathbf{1 0}$ in 59% yield. Careful crystallisation of the residue obtained from the filtrate gave the previously unreported ketone 12, formed by adventitious hydrolysis of cycloadduct 11 , in 15% yield.

We felt that the critical step in the strategy would be the differentiation of the carbonyl groups of the anhydride. Thus, our initial study employed ketone $\mathbf{1 3}$ prepared by the acidic hydrolysis of silyl enol ether 10. ${ }^{3}$ It was inferred from models that reduction of the ketone would produce an intermediary alcohol that could react with the C-1 and/or C-2 anhydride carbonyl group. Gratifyingly, treatment of a solution of ketone 13 in glacial acetic acid with sodium cyanoborohydride resulted in a regioselective opening of the anhydride to afford an $83: 17$ mixture of the γ - and δ-lactone acids $\mathbf{1 4}$ and $\mathbf{1 5}$ which were isolated in yields of 72 and 7%, respectively. The structures of

1

7

10

8

11

12

6
the last-cited compounds were deduced from their analytical and spectroscopic data, with the γ-lactonic acid 14 exhibiting a peak at $1769 \mathrm{~cm}^{-1}$ in the IR spectrum attributable to the γ-lactone carbonyl group.

Acyl azide 16 was prepared from the acid 14 under standard conditions in a 90% yield (Scheme 1). A near-quantitative conversion of acyl azide $\mathbf{1 6}$ into isocyanate $\mathbf{1 7}$ was achieved by heating at reflux in benzene. The retention of stereochemistry at C-2 for the rearrangement was apparent from the strong (5\%) NOE enhancement between 2-H and $8-\mathrm{H}^{\beta}$ (Fig. 1). Hydrolysis of the isocyanate $\mathbf{1 7}$ to the amine $\mathbf{1 9}$ proved to be problematic. To avoid urea formation, the hydrolysis was best effected under basic conditions using triethylamine in aq. THF to give the

13

14

15
non-systematic numbering

Scheme 1 Reagents and conditons: i, $(\mathrm{COCl})_{2}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; then NaN_{3}, THF (90%); ii, $\mathrm{C}_{6} \mathrm{H}_{6}, \Delta\left(98 \%\right.$); iii, NEt_{3}, aq. THF (35%); iv, LiAlH_{4}, THF, v, Ac ${ }_{2} \mathrm{O}$, pyr (81% over two steps); vi, IRA-400 $\left(\mathrm{OH}^{-}\right)$, $\mathrm{MeOH}(73 \%)$; vii, $\mathrm{BnOH}, \mathrm{C}_{6} \mathrm{H}_{6}, \Delta(94 \%)$; viii, $10 \% \mathrm{Pd}-\mathrm{C}$, $\mathrm{EtOH}(84 \%)$.

Fig. 1 NOE enhancement for 17.

Fig. 2 Solution conformation of carba-pyranoses 9 and 20.
amine $\mathbf{1 9}$ in 35% yield. The sequence was continued with the lithium aluminium hydride reduction of lactone 19 which gave, after subsequent treatment with acetic anhydride and pyridine, the peracetylated 4-amino-2,4-dideoxy-monocarbadisaccharide 20 in 81% yield. The structure and lyxostereochemistry of the carbocyclic ring of compound $\mathbf{2 0}$ was apparent from an analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum. The pseudo-anomeric proton, $1-\mathrm{H}$, resonated as an apparent triplet of triplets with coupling constants $J_{1,5 \mathrm{a} \text {-ax }}(11 \mathrm{~Hz})$ and $J_{1,2 \mathrm{ax}}$ $(12 \mathrm{~Hz})$ confirming its axial orientation. Similarly, axial orientations of $3-\mathrm{H}$ and $5-\mathrm{H}$ were apparent from the coupling constants $J_{2 \mathrm{ax}, 3}(12 \mathrm{~Hz})$ and $J_{5,5 \mathrm{a}-\mathrm{ax}}(13 \mathrm{~Hz})$. The coupling constants $J_{3,4}$ and $J_{4,5}$, both of 4 Hz , indicated the equatorial disposition of $4-\mathrm{H}$, thus confirming that the Curtius rearrangement of acyl azide $\mathbf{1 6}$ had indeed proceeded with retention of configuration. The analysis of coupling-constant data was also consistent with the carbocyclic ring adopting a ${ }^{1} C_{4}$ chair-like conformation (Fig. 2). The final step in the sequence involved deacetylation of compound 20 using IRA-400 $\left(\mathrm{OH}^{-}\right)$resin in methanol; after
purification by reversed-phase HPLC, the pseudo-disaccharide 7 was isolated in 73% yield. Although the spectral data were consistent with the proposed structure, microanalysis suggested that compound 7 existed as a hydrate. Reacetylation of compound 7 under standard conditions confirmed the structural assignment by furnishing 20 in 81% yield.

The low-yielding step in the $\mathbf{1 4} \boldsymbol{\rightarrow 7}$ sequence was the hydrolysis of the isocyanate 17 . We believed that this was due to competing hydrolyses of the lactone and ester functions of compound $\mathbf{1 7}$ and that the resulting by-products could also be converted into monocarba-disaccharide 7. Indeed, when the crude reaction product from the hydrolysis was subjected to the reduction, acetylation and deprotection sequence, the monocarba-disaccharide 7 was isolated in an improved overall yield of 56% (cf. 21% overall yield for the earlier sequence). An alternative method for the preparation of amine 19 was also pursued. Treatment of isocyanate $\mathbf{1 7}$ with benzyl alcohol gave carbamate 18 in 94% yield, catalytic hydrogenolysis of which furnished an 84% yield of amine 19 .
A similar sequence using isomeric ketone $\mathbf{1 2}$ allowed the synthesis of a carba-sugar with the opposite stereochemistry at the carbocyclic ring. Sodium cyanoborohydride reduction of ketone $\mathbf{1 2}$ gave a $75: 25$ mixture of the lactonic acids $\mathbf{2 1}$ and $\mathbf{2 2}$.

21

22
non-systematic numbering

Crystallisation of the mixture gave the major lactonic acid $\mathbf{2 1}$ in 58% yield. Treatment of the acid chloride derived from acid $\mathbf{2 1}$ with sodium azide gave acyl azide $\mathbf{2 3}$ which, on heating in a mixture of benzyl alcohol and benzene, gave the carbamate 24 (Scheme 2). The yield for the two steps was 88%. Hydro-

Scheme 2 Reagents and conditons: i, $(\mathrm{COCl})_{2}$, DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; then NaN_{3}, THF (99%); ii, $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{BnOH}, \Delta(89 \%)$; iii, $10 \% \mathrm{Pd}-\mathrm{C}$, EtOH (57%); iv, $\mathrm{LiAlH}_{4}, \mathrm{THF} ; \mathrm{v}, \mathrm{Ac}_{2} \mathrm{O}$, pyr (63% over two steps).
genolysis of benzyl carbamate 24 gave amine 25 (57\%), which was then reduced with lithium aluminium hydride and acetylated to give the protected monocarba-disaccharide $\mathbf{8}$ (63\%).

Our attention then focused on hydroxylation at C-4 of the carbocycle to give a fully substituted carba-sugar. This was

Scheme 3 Reagents and conditions: i, DMDO in $\mathrm{Me}_{2} \mathrm{CO}$ (85\%); ii, $\mathrm{Ac}_{2} \mathrm{O}$, cat $\mathrm{HClO}_{4}(84 \%)$; iii, $\mathrm{NaBH}_{3} \mathrm{CN}$, AcOH (52% for 28).
achieved by treatment of cycloadduct $\mathbf{1 0}$ with an acetone solution of dimethyldioxirane (DMDO) ${ }^{15}$ (Scheme 3). The acyloin 26 was obtained in 85% yield after crystallisation. The configuration at C-4 could not be determined from NMR data; however, it is reasonable to assume that the oxidant reacted preferentially from the least-hindered face of the enol ether to give the $\mathrm{C}-4 \beta$-alcohol. The next step in the sequence involved reduction of ketone 26 with sodium cyanoborohydride. Unfortunately, it did not result in the desired lactonisation but instead gave diol 30 (56% yield). This problem was overcome by acetylation of the hydroxy group of $\mathbf{2 6}$ under acidic conditions. Sodium cyanoborohydride reduction of the resultant acetoxy ketone $\mathbf{2 7}$ gave a $75: 25$ mixture of the lactonic acids $\mathbf{2 8}$ and 29 which were isolated in 52 and 9% yield, respectively.

Problems were encountered with the formation of the corresponding acyl azide derived from the acid 28. Using the protocol developed for the formation of compound 16, the acid 28 gave the unsaturated acyl azide 31 via β-elimination of the

31
tetra- O-acetyl-D-glucopyranose moiety. This was overcome using a two-step procedure involving initial isolation of acid chloride 32 (Scheme 4) and its subsequent treatment, in

Scheme 4 Reagents and conditons: i, $(\mathrm{COCl})_{2}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(82 \%)$: ii, $\mathrm{NaN}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(92 \%)$; iii, $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{BnOH}, \Delta(85 \%)$; iv, $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}$ (55%); v, $\mathrm{LiAlH}_{4}, \mathrm{THF}$; vi, $\mathrm{Ac}_{2} \mathrm{O}$, pyr (61% over two steps).
dichloromethane, with sodium azide. The desired acyl azide 33 was isolated in 92% yield. Conversion into the carbamate 34, hydrogenolysis to the amine $\mathbf{3 5}$, lithium aluminium hydride reduction and acetylation gave the target monocarbadisaccharide 9 in 29% overall yield. Once again, the spectral data were consistent with the structure, and analysis of coupling data showed equatorial orientations of the $\mathrm{C}-1,-3,-4$, and -5 substituents. Although the $2-\mathrm{H}$ resonance was partly obscured by other signals, it could be observed as an apparent triplet at $\delta 5.09$ using resolution-enhancement techniques, with coupling constants $J_{2,3}$ and $J_{1,2}$ of 9.5 Hz , confirming the axial orientation of $2-\mathrm{H}$. Collectively, analysis of the couplingconstant data indicates that the carbocyclic ring of compound 9 adopts a ${ }^{1} C_{4}$-like conformation as depicted in Fig. 2.

In conclusion, we have demonstrated that the asymmetric Diels-Alder reaction of dienyl glucoside 1 can provide a method for accessing 1,3 -glycosidically linked aminomono-carba-disaccharides. Further work is underway to establish methods for the introduction of other heteroatom functionality at C-4 in these systems and also for modifying the synthetic procedures to provide $1,1-$ and 1,4 -glycosidically linked mono-carba-disaccharides.

Experimental

Mps were measured on a Gallenkamp capillary melting-point apparatus and are uncorrected. Specific optical rotations $[a]_{\mathrm{D}}$, given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$, were measured at $\approx 22^{\circ} \mathrm{C}$ using either a JASCO DIP-370 or DIP-1000 polarimeter with a cell of path length 1.0 dm . Varian Gemini 200 and VXR300 spectrometers were used to obtain ${ }^{1} \mathrm{H}$ (200 and 300 MHz) and ${ }^{13} \mathrm{C}$ (50 and 75 MHz) NMR spectra. Chemical shifts are reported as parts per million (ppm) using the δ-scale. Coupling constants (J) and separations are reported to the nearest 0.5 Hz . IR spectra were recorded on a Perkin-Elmer 1600 series FTIR spectrophotometer. HPLC separations were carried out with an Activon ODS column ($25 \times 1 \mathrm{~cm}$) employing a JASCO PU-980 pump and JASCO UV-975 UV/vis detector. FAB mass spectra were recorded on a Kratos MSORF mass spectrometer; m nitrobenzyl alcohol was used as the matrix and xenon as the ionising gas.

Elemental analyses were carried out by Dr R. G. Cunninghame and associates at the Campbell Microanalytical Laboratory, University of Otago, Dunedin, New Zealand. Thin-layer chromatography (TLC) was performed on Merck silica gel DC Alurolle Kieselgel $60 \mathrm{~F}_{254}$ plates and plates were visualised under a UV lamp and/or with a spray consisting of $5 \% \mathrm{w} / \mathrm{v}$ dodecamolybdophosphoric acid in ethanol with subsequent heating. Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). All chromatography solvents were reagent grade. THF was distilled from sodium/ potassium-benzophenone ketyl under nitrogen, and dichloromethane was distilled from phosphorus pentaoxide. All other solvents and reagents were purified using the methods described by Perrin et al. ${ }^{16}$

Diels-Alder cycloaddition of diene $\mathbf{1}$ and maleic anhydride

A solution of freshly sublimed maleic anhydride $(5.5 \mathrm{~g}$, 56 mmol) and diene $1(27.0 \mathrm{~g}, 55 \mathrm{mmol})$ in dry benzene $\left(150 \mathrm{~cm}^{3}\right)$ was stirred for 24 h under an atmosphere of nitrogen. Evaporation of the mixture left a residue that comprised mainly a $75: 25$ mixture of the cycloadducts $\mathbf{1 0}$ and $\mathbf{1 1}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Addition of diethyl ether to the residue and filtration of the crystalline material gave $(1 R, 2 R, 3 S)-3$ ($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)-5-(trimethyl-siloxy)cyclohex-4-ene-1,2-dicarboxylic anhydride $\mathbf{1 0}$ as white crystals ($19.0 \mathrm{~g}, 59 \%$); mp $214-215^{\circ} \mathrm{C}$ (lit., ${ }^{3} 212-213^{\circ} \mathrm{C}$). Removal of the solvent from the filtrate and slow crystallisation of the residue from dichloromethane-diethyl ether gave
(1S,2S,3R)-5-oxo-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy) cyclohexane-1,2-dicarboxylic anhydride 12 ($4.2 \mathrm{~g}, 15 \%$) as a slightly impure solid. Recrystallisation from dichloro-methane-diethyl ether yielded compound $\mathbf{1 2}$ as analytically pure colourless crystals ($1.8 \mathrm{~g}, 6 \%$); mp 176-179 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 51.6 ; \mathrm{H}, 5.3 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{14}$ requires C, $\left.51.4 ; \mathrm{H}, 5.1 \%\right)[a]_{\mathrm{D}}+30$ (c 0.3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1784$ (anhydride $\mathrm{C}=\mathrm{O}$), 1750 (ester $\mathrm{C}=\mathrm{O}$) and 1722 (ketone $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.99, 2.01 and $2.11(6,3$ and 3 H , each s, $4 \times \mathrm{OAc}), 2.36(1 \mathrm{H}$, dd, $J 18$ and 2, 4-H), $2.78(1 \mathrm{H}, \mathrm{dd}, J 18$ and 4, 4-H), $2.79(1 \mathrm{H}$, dd, $J 18$ and 10, $6-\mathrm{H}$), $2.88(1 \mathrm{H}, \mathrm{dd}, J 18$ and 8, 6-H), 3.37 ($1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $3,2-\mathrm{H}$), 3.58 ($1 \mathrm{H}, \mathrm{dt}, J 8$ and $10,1-\mathrm{H}$), $3.67\left(1 \mathrm{H}\right.$, dt, $J 9.5$ and $\left.3.5,5^{\prime}-\mathrm{H}\right)$, $4.18(2 \mathrm{H}$, d, separation $\left.3.5,6^{\prime}-\mathrm{H}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.82(1 \mathrm{H}, \mathrm{q}, J 3.5,3-\mathrm{H})$, $4.89\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$ and $5.16\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right)$; δ_{C} (75 MHz d ${ }_{6}$-DMSO) 20.2 , 20.4, 20.5, 20.7, 35.6, 36.2, 44.7, 61.9, 68.3, 70.5, 70.9, 72.0, $72.3,96.0,169.0,169.4,169.7,170.2,170.7,174.2$ and 209.0 (5-CO); $m / z(\mathrm{FAB}) 515\left(\mathrm{MH}^{+}, 13 \%\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 56\right)$ and 154 (100).

Sodium cyanoborohydride reduction of ketone 13

Sodium cyanoborohydride ($6.70 \mathrm{~g}, 107 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{1 3}^{3}(11.2 \mathrm{~g}, 21.7 \mathrm{mmol})$ in glacial acetic acid $\left(120 \mathrm{~cm}^{3}\right)$. After stirring of the mixture for 15 h , the solvent was removed in vacuo and the residue was partitioned between dichloromethane and hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3}$). The aqueous layer was extracted with dichloromethane ($3 \times 40 \mathrm{~cm}^{3}$) and the combined organic extracts were washed with aq. sodium hydrogen carbonate ($2 \times 100 \mathrm{~cm}^{3}$). The combined basic aqueous layers were acidified with conc. hydrochloric acid and then extracted with dichloromethane $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give a white foam, shown to be an $83: 17$ mixture of the lactonic acids $\mathbf{1 4}$ and $\mathbf{1 5}$ on the basis of $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis. Crystallisation of the residue from dichloromethanediethyl ether gave ($1 R, 2 R, 3 S, 5 S$)-7-oxo-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β-D-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octane-2carboxylic acid 14 ($8.10 \mathrm{~g}, 72 \%$) as colourless crystals; mp 193-195 ${ }^{\circ} \mathrm{C}$ (Found: C, $51.5 ; \mathrm{H}, 5.5 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{14}$ requires C, $51.2 ; \mathrm{H}, 5.5 \%)[a]_{\mathrm{D}}-13\left(c 0.03\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)[a]_{\mathrm{D}}-34(c 0.2$ in $\left.\mathrm{Me}_{2} \mathrm{CO}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3000 \mathrm{br}(\mathrm{O}-\mathrm{H}), 1769$ (lactone $\mathrm{C}=\mathrm{O}$) and 1743 (acid and ester $\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.77(1 \mathrm{H}$, d, $\left.J 11.5,8-\mathrm{H}^{\beta}\right), 1.95\left(1 \mathrm{H}, \mathrm{dd}, J 15.5\right.$ and $\left.4.5,4-\mathrm{H}^{\beta}\right), 1.99$, 2.02, 2.07 and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), 2.55-2.67 ($2 \mathrm{H}, \mathrm{m}$, 4 - and $8-\mathrm{H}^{\mathrm{a}}$), $3.00(1 \mathrm{H}, \mathrm{dd}, J 4.5$ and $2,2-\mathrm{H}), 3.06(1 \mathrm{H}$, br d, $J 5,1-\mathrm{H}), 3.68\left(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 10\right.$ and $\left.4,5^{\prime}-\mathrm{H}\right), 4.18-4.21(2 \mathrm{H}, \mathrm{m}$, $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{br} t, J 4.5,3-\mathrm{H}), 4.70\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right)$, $4.85(1 \mathrm{H}, \mathrm{br} t, J 5,5-\mathrm{H}), 4.93\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.06$ $\left(1 \mathrm{H}, \mathrm{t}, J 9,4^{\prime}-\mathrm{H}\right)$ and $5.15\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; d_{6}-DMSO) 20.3, 20.4, 20.5, 34.7, 36.1, 36.9, 48.9, 61.6, 68.1, $70.3,70.6,72.2,75.1,75.7,102.0,168.8,169.3,169.6,170.0$, 170.4 and $175.5 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 517\left(\mathrm{MH}^{+}, 2 \%\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 7\right)$ and 154 (100).

Removal of the solvent from the filtrate gave a foam which was found to be the slightly impure lactonic acid $\mathbf{1 5}$ $(1.67 \mathrm{~g})$. Slow crystallisation from dichloromethane-diethyl ether-hexanes gave ($1 R, 2 R, 4 S, 7 S$)-6-oxo- $7-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra-O-acetyl- β-D-glucopyranosyloxy)-5-oxabicyclo[2.2.2]octane-2carboxylic acid $\dagger 15(0.730 \mathrm{~g}, 7 \%)$ as clear crystals; mp $91-93{ }^{\circ} \mathrm{C}$ (Found: C, 51.2; H, 5.8. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{14}$ requires C, $51.2 ; \mathrm{H}, 5.5 \%$) $[a]_{\mathrm{D}}-65\left(c 0.5 \mathrm{in} \mathrm{Me}_{2} \mathrm{CO}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300(\mathrm{O}-\mathrm{H})$ and 1755 (acid, lactone and ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.89-2.12(2 \mathrm{H}, \mathrm{m}, 3-$ and $8-\mathrm{H})$ overlapping with $2.00,2.03,2.08$ and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), $2.17(1 \mathrm{H}, \mathrm{dd}, J 14$ and $9,8-\mathrm{H})$, $2.32(1 \mathrm{H}, \mathrm{ddt}, J 13.5,6.5$ and $3.5,3-\mathrm{H}), 2.83$ (1 H , ddd, $J 10.5$, 7 and $1.5,2-\mathrm{H}), 3.00-3.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}), 3.35(1 \mathrm{H}, \mathrm{br}$ dd,

[^0]$J 3$ and 1.5, 1-H), $3.75\left(1 \mathrm{H}\right.$, ddd, $J 9.5,4$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.17$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.27(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 4 , $\left.6^{\prime}-\mathrm{H}\right), 4.39(1 \mathrm{H}, \mathrm{dt}, J 9$ and $3,7-\mathrm{H}), 4.76\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right)$, 4.76-4.81 $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.95\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.09$ ($1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}$) and $5.23\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$; m / z (FAB) 539 $\left(\mathrm{MNa}^{+}, 7 \%\right), 517\left(\mathrm{MH}^{+}, 23\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}^{+}{ }^{+}, 45\right), 169(90)$ and 136 (100).

($1 R, 2 R, 3 S, 5 S$)-7-Oxo-3-($\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-gluco-pyranosyloxy)-6-oxabicyclo[3.2.1] octane-2-carbonyl azide 16

Oxalyl dichloride ($1.20 \mathrm{~cm}^{3}, 13.8 \mathrm{mmol}$) was added to a solution of lactonic acid $\mathbf{1 4}(4.50 \mathrm{~g}, 8.71 \mathrm{mmol})$ and dry DMF (6 drops) in dry dichloromethane ($360 \mathrm{~cm}^{3}$) at room temperature. Stirring was continued until the evolution of bubbles ceased $(30 \mathrm{~min})$. After removal of solvent under reduced pressure $\left(<30^{\circ} \mathrm{C}\right)$, the residue was dissolved in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ and sodium azide $(4.5 \mathrm{~g}, 69 \mathrm{mmol})$ was added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , poured into water ($200 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed. Crystallisation of the residue from dichloromethane-diethyl ether gave the title compound 16 ($4.24 \mathrm{~g}, 90 \%$) as white crystals; mp $218-230^{\circ} \mathrm{C}$ (decomp.) (Found: C, 48.8; H, 4.9; N, 7.4. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{13}$ requires $\mathrm{C}, 48.8 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.8 \%)[a]_{\mathrm{D}}-25\left(c 1.1\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 2137\left(\mathrm{~N}_{3}\right), 1775$ (lactone $\mathrm{C}=\mathrm{O}$) and 1726 (ester and acyl azide $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.71\left(1 \mathrm{H}, \mathrm{d}, J 11.5,8-\mathrm{H}^{\beta}\right)$, $1.89\left(1 \mathrm{H}, \mathrm{dd}, J 16\right.$ and $\left.5,4-\mathrm{H}^{\beta}\right), 1.98,2.01,2.06$ and 2.10 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}), 2.50-2.70\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 8-\mathrm{H}^{\mathrm{a}}\right), 2.89(1 \mathrm{H}, \mathrm{dd}$, $J 4.5$ and $2,2-\mathrm{H}), 3.04-3.10(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{dt}, J 9$ and 3.5, $\left.5^{\prime}-\mathrm{H}\right), 4.19\left(2 \mathrm{H}\right.$, d, separation $\left.3.5,6^{\prime}-\mathrm{H}_{2}\right), 4.47(1 \mathrm{H}$, br t, $J 4,3-\mathrm{H}), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.80(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4.5,5-\mathrm{H})$, $4.94\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.05\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$ and $5.17\left(1 \mathrm{H}, \mathrm{t}, J 9,3^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{FAB}) 542\left(\mathrm{MH}^{+}, 33 \%\right)$ and 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 100\right)$.

($1 R, 2 R, 3 S, 5 S$)-2-Isocyanato-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octan-7-one 17

A suspension of acyl azide $16(0.200 \mathrm{~g}, 0.369 \mathrm{mmol})$ in dry benzene ($30 \mathrm{~cm}^{3}$) was heated under reflux for 2 h . Removal of the solvent in vacuo and crystallisation of the residue from dichloromethane-diethyl ether gave the title compound 17 as colourless crystals $(0.185 \mathrm{~g}, 98 \%)$; mp $230-232^{\circ} \mathrm{C}$ (Found: C, 51.4; H, 5.4; N, 2.8. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{13}$ requires C, $51.5 ; \mathrm{H}, 5.3 ; \mathrm{N}$, $2.7 \%)[a]_{\mathrm{D}}-45\left(c 0.9\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2287(\mathrm{NCO})$, 1768 (lactone $\mathrm{C}=\mathrm{O}$) and 1750 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.75\left(1 \mathrm{H}, \mathrm{d}, J 12,8-\mathrm{H}^{\beta}\right), 1.88(1 \mathrm{H}$, dd, $J 15.5$ and 5 , $4-\mathrm{H}^{\mathrm{\beta}}$), 1.99, 2.01, 2.08 and 2.11 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), 2.49$2.59\left(2 \mathrm{H}, \mathrm{m}, 4-\right.$ and $\left.8-\mathrm{H}^{\mathrm{c}}\right), 2.68-2.75(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.67$ and $3.71[2 \mathrm{H}$, overlapping $\mathrm{dt}(J 10$ and 3.5$)$ and $\mathrm{dd}(J 4$ and 2.5$)$, 5^{\prime} - and $2-\mathrm{H}$, respectively], 4.18 and 4.22 [3 H , overlapping d (separation 3.5) and $\mathrm{t}(J 4.5), 6^{\prime}-\mathrm{H}_{2}$ and 3-H, respectively], 4.75 and $4.79\left[2 \mathrm{H}\right.$, overlapping $\mathrm{d}\left(\begin{array}{l}\mathrm{J}\end{array}\right)$ and $\mathrm{t}\left(J_{5}\right), 1^{\prime}$ - and $5-\mathrm{H}$, respectively], $5.02-5.12\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right)$ and $5.19(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.6,20.7(2 \times), 20.8,35.0$, 37.2, 43.7, 56.6, 61.8, 68.6, 70.8, 71.9, 72.8, 72.9, 75.5, 101.1, $125.3,169.5,169.7,170.4,170.7$ and $174.6 ; \mathrm{m} / \mathrm{z}$ (FAB) 514 $\left(\mathrm{MH}^{+}, 25 \%\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 94\right)$ and $169(100)$.

($1 R, 2 R, 3 S, 5 S$)-2-Amino-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octan-7-one 19

Triethylamine ($0.120 \mathrm{~cm}^{3}, 0.861 \mathrm{mmol}$) was added to a stirred solution of isocyanate $17(0.500 \mathrm{~g}, 0.974 \mathrm{mmol})$ in a mixture of THF ($25 \mathrm{~cm}^{3}$) and water ($25 \mathrm{~cm}^{3}$). After 10 min at room temperature, the solution was acidified with hydrochloric acid $\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$, poured into dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3 \times 60 \mathrm{~cm}^{3}$). The combined aqueous extracts were basified using solid sodium
hydrogen carbonate and extracted with dichloromethane $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The organic extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to leave a residue $(0.240$ g), which was crystallised from dichloromethane-diethyl ether to give the title compound $19(0.168 \mathrm{~g}, 35 \%)$ as fine colourless needles; mp 191-194 ${ }^{\circ} \mathrm{C}$ (Found: C, 51.5; H, 6.0; N, 2.7. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{12}$ requires C, 51.7; H, 6.0; N, 2.9\%) [a] $]_{\mathrm{D}}-38(c 0.5$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3378(\mathrm{~N}-\mathrm{H}), 1751$ (lactone $\left.\mathrm{C}=\mathrm{O}\right)$ and 1733 (ester $\mathrm{C}=\mathrm{O})$) $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.65-1.75(3 \mathrm{H}, \mathrm{br} \mathrm{m}$, NH_{2} and $\left.8-\mathrm{H}^{\beta}\right), 1.89\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.5.5,4-\mathrm{H}^{\beta}\right), 1.99,2.01$, 2.09 and 2.12 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), 2.38-2.43 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 2.44-2.56 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 8-\mathrm{H}^{\omega}$), 3.14-3.20 (1 H, m, 2-H), 3.64 $\left(1 \mathrm{H}, \mathrm{dt}, J 9.5\right.$ and $\left.3.5,5^{\prime}-\mathrm{H}\right), 4.18$ and 4.21 [3 H , overlapping d (separation 4) and $\mathrm{t}\left(J^{\prime} 4.5\right), 6^{\prime}-\mathrm{H}_{2}$ and $3-\mathrm{H}$, respectively], 4.77 ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4.5,5-\mathrm{H}), 4.82\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 5.03(1 \mathrm{H}, \mathrm{dd}$, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.08\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$ and $5.16(1 \mathrm{H}, \mathrm{t}, J 9$, $\left.3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.6,20.7,35.8,37.2,46.2,55.5$, $61.9,68.5,71.3,71.8,73.0,75.9,76.0,101.7,169.0,169.3,170.4$, 170.6 and 176.4; m/z (FAB) $488\left(\mathrm{MH}^{+}, 83 \%\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 27), 307 (42), 289 (30) and 136 (100).

4-Acetamido-1,6-di- O-acetyl-2,4-dideoxy-3-O-($\mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}, 6^{\prime}$ -tetra- O-acetyl $\boldsymbol{\beta}$-d-glucopyranosyl)-5a-carba- β-L-lyxo-hexopyranose 20

Lithium aluminium hydride ($0.400 \mathrm{~g}, 10.5 \mathrm{mmol}$) was added carefully to a solution of amine $19(0.529 \mathrm{~g}, 1.09 \mathrm{mmol})$ in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ and the resulting mixture was heated under reflux for 24 h . The reaction was quenched by successive additions of 'wet' diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$, water $\left(1 \mathrm{~cm}^{3}\right)$ and aq. sodium hydroxide ($15 \% \mathrm{w} / \mathrm{v} ; 0.7 \mathrm{~cm}^{3}$). Evaporation of the mixture gave a residue, which was dissolved in a mixture of acetic anhydride $\left(10 \mathrm{~cm}^{3}\right)$ and pyridine $\left(10 \mathrm{~cm}^{3}\right)$ and the solution was stirred for 48 h . Water was added and, after a further 3 h of stirring, the mixture was poured into hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3}$; $200 \mathrm{~cm}^{3}$) then extracted with dichloromethane. The organic layer was washed successively with hydrochloric acid (1 mol $\left.\mathrm{dm}^{-3}\right)$ and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed. The residue was purified by silica gel column chromatography [EtOAc-hexanes $(9: 1)$ as eluent] giving the title compound 20 $(0.547 \mathrm{~g}, 81 \%)$ as a colourless foam; $R_{\mathrm{f}} 0.6$ (EtOAc) (Found: C, 52.2; $\mathrm{H}, 6.4 ; \mathrm{N}, 2.2 ; \mathrm{MH}^{+}, 618.2399 . \mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{15}$ requires C , $\left.52.5 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.3 \% ; \mathrm{MH}^{+}, 618.2398\right)[a]_{\mathrm{D}}-23(c 0.2$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3387 \mathrm{br}(\mathrm{N}-\mathrm{H})$, 2946, 1738 (ester $\mathrm{C}=\mathrm{O})$ and $1672($ amide $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12(1 \mathrm{H}$, br q, $\left.J 13,5 \mathrm{a}-\mathrm{H}^{\text {ax }}\right), 1.53\left(1 \mathrm{H}, \mathrm{q}, J 12,2-\mathrm{H}^{\text {ax }}\right), 1.80-1.95(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}$ and $5 \mathrm{a}-\mathrm{H}^{\mathrm{eq}}$), 1.97, 1.98, 2.01, 2.03, 2.04, 2.05 and 2.08 (each $3 \mathrm{H}, \mathrm{s}, 6 \times \mathrm{OAc}$ and NAc$), 2.22-2.33\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\mathrm{eq}}\right), 3.70(1 \mathrm{H}$, ddd, $J 10,5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 3.74-3.87(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 6-\mathrm{H})$, 4.06-4.16 ($2 \mathrm{H}, \mathrm{m}, 6^{\prime}-$ and $\left.6-\mathrm{H}\right), 4.26(1 \mathrm{H}, \mathrm{dd}, J 12$ and 5 , $\left.6^{\prime}-\mathrm{H}\right), 4.55\left(1 \mathrm{H}\right.$, br dt, $J 10$ and 4, 4-H), $4.62\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right)$, $4.76(1 \mathrm{H}, \mathrm{br} \mathrm{tt}, J 12$ and $4,1-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dd}, J 10$ and 8 , $\left.2^{\prime}-\mathrm{H}\right), 5.02\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{t}, J 10,3^{\prime}-\mathrm{H}\right)$ and 5.40 $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.6,20.7,20.9$ and $21.1\left(6 \times \mathrm{OCOCH}_{3}\right), 23.2\left(\mathrm{NCOCH}_{3}\right), 28.6\left(5 \mathrm{a}-\mathrm{CH}_{2}\right), 34.0$ $\left(2-\mathrm{CH}_{2}\right), 35.8(5-\mathrm{CH}), 46.0(4-\mathrm{CH}), 62.0\left(6^{\prime}-\mathrm{CH}_{2}\right), 64.5\left(6-\mathrm{CH}_{2}\right)$, $68.4\left(4^{\prime}-\mathrm{CH}\right)$, $68.6(1-\mathrm{CH}), 71.0\left(2^{\prime}-\mathrm{CH}\right), 71.7\left(5^{\prime}-\mathrm{CH}\right), 72.6$ $\left(3^{\prime}-\mathrm{CH}\right), 75.0(3-\mathrm{CH}), 99.8\left(1^{\prime}-\mathrm{CH}\right)$ and $169.5,169.6,170.1$, $170.5,170.7$ and $171.0(7 \times \mathrm{CO}) ; m / z(\mathrm{FAB}) 618\left(\mathrm{MH}^{+}, 25 \%\right)$, $558\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 6\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 90\right)$ and $307(100)$.

4-Acetamido-2,4-dideoxy-3-O-(β-D-glucopyranosyl)-5a-carba- β -L-lyxo-hexopyranose 7

IRA-400 $\left(\mathrm{OH}^{-}\right)$Resin (1 g) was added to a solution of compound $20(0.212 \mathrm{~g}, 0.343 \mathrm{mmol})$ in absolute methanol $\left(43 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at ambient temperature until the presence of starting material could not be detected by TLC $(12 \mathrm{~h})$. The mixture was filtered, the resin was washed with water $\left(30 \mathrm{~cm}^{3}\right)$, and the combined filtrate and washings were
evaporated in vacuo. Purification of the glassy residue by semi-preparative reversed-phase HPLC [water-MeOH (7:3) as eluent; $\lambda=220 \mathrm{~nm}]$ gave the title compound $7(0.092 \mathrm{~g}, 73 \%)$ as a glass (Found: C, $46.6 ; \mathrm{H}, 7.6 ; \mathrm{N}, 3.5 . \mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{9} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, 47.1; H, 7.4; N, 3.7\%) $[a]_{\mathrm{D}}-24\left(c 0.1\right.$ in water); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 11\right.$ and $\left.14,5 \mathrm{a}-\mathrm{H}^{\mathrm{ax}}\right), 1.56(1 \mathrm{H}, \mathrm{q}, J 12$, 2-H ${ }^{\text {ax }}$), 1.75-1.89 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $5 \mathrm{a}-\mathrm{H}^{\mathrm{eq}}$), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}$), $2.16-2.27\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\text {eq }}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 3.31-$ $3.52\left(5 \mathrm{H}, \mathrm{m}, 3^{\prime}-, 4^{\prime}-\right.$ and $5^{\prime}-\mathrm{H}$ and $\left.6-\mathrm{H}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J 12$ and $\left.6,6^{\prime}-\mathrm{H}\right), 3.79(1 \mathrm{H}, \mathrm{br} \mathrm{tt}, J 11$ and $4,1-\mathrm{H}), 3.91(1 \mathrm{H}$, dd, $J 12$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.06(1 \mathrm{H}, \mathrm{dt}, J 13$ and $4,3-\mathrm{H})$ and 4.53 and $4.56\left[2 \mathrm{H}\right.$, overlapping $\mathrm{t}(J 4)$ and $\mathrm{d}(J 8), 4-$ and $1^{\prime}-\mathrm{H}$, respectively]; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 23.3\left(\mathrm{NCOCH}_{3}\right), 31.9\left(5 \mathrm{a}-\mathrm{CH}_{2}\right), 37.4$ $\left(2-\mathrm{CH}_{2}\right), 39.1(5-\mathrm{CH}), 47.4(4-\mathrm{CH}), 62.0\left(6^{\prime}-\mathrm{CH}_{2}\right), 63.5\left(6-\mathrm{CH}_{2}\right)$, 68.1 (1-CH), 71.0, 74.3 (2'-CH), 76.7, 76.8, 77.3, 101.8 (1'-CH) and $176.7(\mathrm{CO}) ; m / z(\mathrm{FAB}) 366\left(\mathrm{MH}^{+}, 2 \%\right), 307$ (12), 289 (10), 204 (10) and 154 (100).

Preparation of pseudo-disaccharide $\mathbf{7}$ from isocyanate 17

Triethylamine ($1.00 \mathrm{~cm}^{3}, 7.17 \mathrm{mmol}$) was added to a solution of isocyanate $\mathbf{1 7}(0.25 \mathrm{~g}, 0.501 \mathrm{mmol})$ in a $1: 1$ mixture of THFwater $\left(25 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 15 min . After removal of the solvent under reduced pressure, the residue was dissolved in dry THF ($50 \mathrm{~cm}^{3}$), and lithium aluminium hydride ($0.227 \mathrm{~g}, 5.98 \mathrm{mmol}$) was carefully added; the resulting mixture was heated under reflux for 24 h . The reaction mixture was quenched by successive additions of 'wet' diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$, water ($1 \mathrm{~cm}^{3}$) and aq. sodium hydroxide ($15 \% \mathrm{w} / \mathrm{v} ; 0.7 \mathrm{~cm}^{3}$). Evaporation of the mixture gave a colourless residue which was dissolved in a mixture of acetic anhydride $\left(10 \mathrm{~cm}^{3}\right)$ and pyridine $\left(10 \mathrm{~cm}^{3}\right)$ and this mixture was stirred for 48 h . Water $\left(100 \mathrm{~cm}^{3}\right)$ was added and, after a further 3 h of stirring, the mixture was poured into hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 200 \mathrm{~cm}^{3}$) then extracted with dichloromethane ($2 \times 100 \mathrm{~cm}^{3}$). The combined organic layers were washed successively with hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3} ; 200 \mathrm{~cm}^{3}$) and water $\left(200 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. IRA-400 $\left(\mathrm{OH}^{-}\right)$Resin $(1 \mathrm{~g})$ was added to a stirred solution of the crude residue in absolute methanol $\left(50 \mathrm{~cm}^{3}\right)$. When the presence of compound 20 could not be detected by TLC (12 h), the mixture was filtered, the resin was washed with water $\left(30 \mathrm{~cm}^{3}\right)$ and the combined filtrate and washings were evaporated in vacuo. Purification of the glassy residue by semi-preparative reversed-phase HPLC [water$\mathrm{MeOH}(7: 3)$ as eluent; $\lambda=220 \mathrm{~nm}$] gave the title compound 7 ($0.103 \mathrm{~g}, 56 \%$ based on isocyanate 17).

Benzyl ($1 R, 2 R, 3 S, 5 S$)-7-oxo-3-($2^{\prime}, 3^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-tetra-O-acetyl- β-d-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octane-2-carbamate 18

A mixture of dry benzyl alcohol ($0.380 \mathrm{~g}, 3.67 \mathrm{mmol}$) and isocyanate $17(0.310 \mathrm{~g}, 0.604 \mathrm{mmol})$ in dry benzene ($30 \mathrm{~cm}^{3}$) was heated under reflux for 20 h . Evaporation of the mixture in vacuo and crystallisation of the residue from dichloromethanediethyl ether gave the title compound $\mathbf{1 8}$ as colourless crystals ($0.351 \mathrm{~g}, 94 \%$); mp 221-223 ${ }^{\circ} \mathrm{C}$ (Found: C, 55.7 ; H, 5.6; N, 2.2. $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{14}$ requires C, 56.0; H, 5.7; N, 2.25\%) [a] $]_{\mathrm{D}}-18$ (c 0.5 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3414(\mathrm{~N}-\mathrm{H})$, 2930, 1753 (lactone $\mathrm{C}=\mathrm{O}$), 1746 (ester $\mathrm{C}=\mathrm{O}$) and 1736 (carbamate $\mathrm{C}=\mathrm{O}$); δ_{H} (300 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.82\left(1 \mathrm{H}, \mathrm{d}, J 11.5,8-\mathrm{H}^{\beta}\right), 1.91(1 \mathrm{H}, \mathrm{dd}, J 15$ and $5,4-\mathrm{H}^{\beta}$), 1.98, 1.99, 2.02 and 2.08 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), 2.46-2.63 $\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}\right.$ and $\left.4-\mathrm{and} 8-\mathrm{H}^{\alpha}\right), 3.52(1 \mathrm{H}, \mathrm{dt}, J 9$ and $\left.3.5,5^{\prime}-\mathrm{H}\right), 4.07-4.20\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 3-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.47(1 \mathrm{H}$, d, $\left.J 8,1^{\prime}-\mathrm{H}\right), 4.78(1 \mathrm{H}, \mathrm{brt}, J 5,5-\mathrm{H}), 4.94-5.19(5 \mathrm{H}, \mathrm{m}$, $2^{\prime}-, 3^{\prime}-$ and $4^{\prime}-\mathrm{H}$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.68(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.5, \mathrm{NH})$ and 7.28-7.41 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.4$, 20.6 (2×), 20.8, 35.3, 36.9, 42.1, 53.1, 61.7, 67.3, 68.2, 71.5, $72.0,72.9,75.6,75.8,102.1,128.3,128.7,136.1,155.6,168.8$, $169.2,170.4,170.6$ and $176.0 ; \mathrm{mlz}(\mathrm{FAB}) 622\left(\mathrm{MH}^{+}, 45 \%\right), 604$ (8), $562\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 4\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}\right.$, 86) and 169 (100).

Sodium cyanoborohydride reduction of ketone 12

Using the method for the preparation of lactones 14 and 15 , sodium cyanoborohydride ($4.74 \mathrm{~g}, 75.5 \mathrm{mmol}$) was added to a solution of ketone $\mathbf{1 2}(7.75 \mathrm{~g}, 15.1 \mathrm{mmol})$ in glacial acetic acid $\left(100 \mathrm{~cm}^{3}\right)$ and the mixture was stirred under a drying tube $\left(\mathrm{CaCl}_{2}\right)$ overnight. Work-up gave a foam which comprised a $75: 25$ mixture of the acids $\mathbf{2 1}$ and $\mathbf{2 2} . \ddagger$ Crystallisation of the mixture from dichloromethane-diethyl ether gave ($1 \mathrm{~S}, 2 \mathrm{2S}, 3 R, 5 R$)-7-oxo-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-gluco-pyranosyloxy)-6-oxabicyclo[3.2.1]octane-2-carboxylic acid 21 as colourless crystals ($4.50 \mathrm{~g}, 58 \%$); mp 192-194 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 51.0 ; \mathrm{H}, 5.2 \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{14}$ requires C, $\left.51.2 ; \mathrm{H}, 5.5 \%\right) ;[a]_{\mathrm{D}}-25$ (c 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3431(\mathrm{O}-\mathrm{H}), 1755$ (lactone $\mathrm{C}=\mathrm{O}$) and 1740 (ester and acid $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.78\left(1 \mathrm{H}, \mathrm{dd}, J 16\right.$ and $\left.4,4-\mathrm{H}^{\beta}\right), 1.81\left(1 \mathrm{H}, \mathrm{d}, J 12,8-\mathrm{H}^{\beta}\right), 2.01$, 2.03, 2.10 and 2.12 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), 2.20-2.75 (1 H , br s, $\mathrm{COOH}), 2.45\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 15,4-\mathrm{H}^{*}\right), 2.57(1 \mathrm{H}$, ddt, $J 12,2$ and $\left.6,8-\mathrm{H}^{*}\right), 3.00(1 \mathrm{H}, \mathrm{dd}, J 4.5$ and $1.5,2-\mathrm{H}), 3.04(1 \mathrm{H}$, br d, $J 5.5$, $1-\mathrm{H}), 3.67\left(1 \mathrm{H}\right.$, ddd, $J 10,4$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.11(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 4, $\left.6^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right)$, 4.68-4.72 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.70\left(1 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{H}\right), 4.79(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 5$, $5-\mathrm{H}), 4.87\left(1 \mathrm{H}, \mathrm{dd}, J 9\right.$ and $\left.7.5,2^{\prime}-\mathrm{H}\right)$ and $5.09-5.21(2 \mathrm{H}, \mathrm{m}$, $4^{\prime}-$ and $\left.3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.7(2 \times), 20.8,20.9,30.5$, $36.5,38.0,49.8,61.8,68.6,71.1,71.6,71.9,72.8,75.1,96.5$, $160.9,169.4,169.6,170.5,171.4$ and $175.2 ; \mathrm{m} / \mathrm{z}$ (FAB) 1055 $\left(\mathrm{M}_{2} \mathrm{Na}^{+}, 1 \%\right), 1033\left(\mathrm{M}_{2} \mathrm{H}^{+}, 2\right), 539\left(\mathrm{MNa}^{+}, 13\right), 517\left(\mathrm{MH}^{+}, 23\right)$, $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 72\right)$ and 154 (100).
The mother liquors were concentrated under reduced pressure to give ($1 S, 2 S, 4 R, 7 R$)-6-oxo-7-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O -acetyl- β-D-glucopyranosyloxy)-5-oxabicyclo[2.2.2]octane-2-carboxylic acid $\dagger 22$ as a slightly impure colourless foam $(0.930 \mathrm{~g}$, $12 \%)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3429(\mathrm{O}-\mathrm{H}), 1762$ (lactone and ester $\mathrm{C}=\mathrm{O})$ and $1712($ acid $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ inter alia 1.82-1.98 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 8-\mathrm{H}$), 2.00, $2.03(2 \times)$ and 2.11 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}), 2.05-2.17(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.35(1 \mathrm{H}, \mathrm{br}$ ddt, $J 14.5,6.5$ and $3.5,3-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{br}$ ddd, $J 10.5,6.5$ and 1.5 , $2-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{br}$ dd, $J 3$ and $1.5,1-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{dt}, J 9.5$ and $\left.3.5,5^{\prime}-\mathrm{H}\right), 4.19\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.23(1 \mathrm{H}$, dd, $J 12.5$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.30(1 \mathrm{H}, \mathrm{dt}, J 9$ and $3,7-\mathrm{H}), 4.65(1 \mathrm{H}, \mathrm{d}$, $\left.J 8,1^{\prime}-\mathrm{H}\right), 4.75-4.80(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 8 , $\left.2^{\prime}-\mathrm{H}\right), 5.08\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$ and $5.20\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.7,20.8,28.4,33.5,37.3,44.4,62.1,68.4$, 71.1, 72.0, 72.7, 73.1, 99.5, 169.2, 169.4, 170.5, 171.1 and 174.9.

($1 S, 2 S, 3 R, 5 R$)-7-Oxo-3-(2', $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$ 'tetra- O-acetyl- β-d-gluco-pyranosyloxy)-6-oxabicyclo[3.2.1] octane-2-carbonyl azide 23

Using the procedure described for the preparation of acyl azide 16, lactonic acid $21(0.500 \mathrm{~g}, 0.97 \mathrm{mmol})$ gave a colourless solid, which was crystallised from dichloromethane-diethyl ether to give the title compound $23(0.520 \mathrm{~g}, 99 \%)$ as colourless crystals; mp 205-215 ${ }^{\circ} \mathrm{C}$ (Found: C, 48.0 ; H, 5.1; N, 7.5. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{13}$ requires C, $48.8 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.8 \%$) $[a]_{\mathrm{D}}+15\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2143\left(\mathrm{~N}_{3}\right), 1778$ (lactone $\mathrm{C}=\mathrm{O}$), 1762 (ester $\mathrm{C}=\mathrm{O}$) and 1716 (acyl azide $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.70-$ $1.81\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 8-\mathrm{H}^{\beta}\right), 2.00,2.02,2.08$ and 2.11 (each 3 H , s, $4 \times \mathrm{OAc}), 2.46\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 15,4-\mathrm{H}^{\omega}\right), 2.57(1 \mathrm{H}, \mathrm{ddt}, J 12,2$ and $\left.6,8-\mathrm{H}^{\omega}\right), 2.89(1 \mathrm{H}$, dd, $J 4.5$ and $2,2-\mathrm{H}), 3.05(1 \mathrm{H}$, br d, $J 5,1-\mathrm{H}), 3.67\left(1 \mathrm{H}\right.$, ddd, $J 10,4.5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.15(1 \mathrm{H}, \mathrm{dd}$, $J 12.5$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.66$ ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 5,3-\mathrm{H}), 4.69\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.78(1 \mathrm{H}$, br t, $J 5,5-\mathrm{H}), 4.86\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.09(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.4^{\prime}-\mathrm{H}\right)$ and $5.21\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.7$ (3×), 20.8, 30.5, 36.0, 37.8, 51.5, 61.9, 68.4, 71.0, 71.3, 72.0, 72.7, 74.6, $96.6,169.2,169.3,170.4,170.7,174.1$ and $175.8 ; \mathrm{m} / \mathrm{z}$ (FAB) $564\left(\mathrm{MNa}^{+}, 15 \%\right), 542\left(\mathrm{MH}^{+}, 3\right), 536$ (33), 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}^{+}, 45\right)$ and (100).

[^1](FAB) $564\left(\mathrm{MNa}^{+}, 15 \%\right), 542\left(\mathrm{MH}^{+}, 3\right), 536$ (33), 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 45\right)$ and (100).

Benzyl ($1 S, 2 S, 3 R, 5 R$)-7-oxo-3-(2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octane-2-carbamate 24

A mixture of acyl azide $\mathbf{2 3}$ ($400 \mathrm{mg}, 0.74 \mathrm{mmol}$) and dry benzyl alcohol ($0.80 \mathrm{~cm}^{3}, 7.7 \mathrm{mmol}$) in dry benzene ($15 \mathrm{~cm}^{3}$) was heated to reflux under a drying tube $\left(\mathrm{CaCl}_{2}\right)$ for 24 h . The solution was concentrated under reduced pressure and the residue was dried in vacuo to a gel. Crystallisation from dichloro-methane-diethyl ether-hexanes gave the title compound 24 $(0.410 \mathrm{~g}, 89 \%)$ as colourless crystals; mp 197-199 ${ }^{\circ} \mathrm{C}$ (Found: C, 56.1; H, 5.7; N, 2.2. $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{14}$ requires C, $56.0 ; \mathrm{H}, 5.7 ; \mathrm{N}$, 2.3%) $[a]_{\mathrm{D}}-34\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3434(\mathrm{~N}-\mathrm{H})$, 1770 (lactone $\mathrm{C}=\mathrm{O}$), 1755 (ester $\mathrm{C}=\mathrm{O}$) and 1716 (carbamate $\mathrm{C}=$ O); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.76\left(1 \mathrm{H}\right.$, dd, $J 15.5$ and $\left.5,4-\mathrm{H}^{\beta}\right)$, $1.88\left(1 \mathrm{H}, \mathrm{d}, J 12,8-\mathrm{H}^{\mathrm{B}}\right), 1.99,2.00,2.01$ and 2.11 (each 3 H , s, $4 \times \mathrm{OAc}), 2.39\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 15.5,4-\mathrm{H}^{d}\right), 2.53(1 \mathrm{H}$, ddt, $J 11.5,2$ and $6,8-\mathrm{H}^{4}$), $2.72(1 \mathrm{H}$, br d, $J 5.5,1-\mathrm{H}), 3.64(1 \mathrm{H}$, ddd, $J 10$, 4.5 and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.08-$ $4.13(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.19\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.29$ ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4.5,3-\mathrm{H}), 4.61\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.76(1 \mathrm{H}, \mathrm{brt}$, $J 4.5,5-\mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.07(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.4^{\prime}-\mathrm{H}\right), 5.09$ and 5.12 (each $\left.1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.22(1 \mathrm{H}$, $\left.\mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right), 5.95(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{NH})$ and $7.28-7.42(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.6(3 \times), 20.8,30.2,37.2,41.8$, $52.9,61.7,67.0,68.3,70.8,72.1,72.4,72.8,75.1,97.4,128.1$ $(3 \times), 128.5(2 \times), 136.3,155.9,169.3,169.4,170.3,170.6$ and 175.5; m/z (FAB) $644\left(\mathrm{MNa}^{+}, 1 \%\right), 622\left(\mathrm{MH}^{+}, 5\right), 578$ (1), 331 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 13\right), 169$ (53) and 154 (100).

($1 S, 2 S, 3 R, 5 R$)-2-Amino-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-d-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octan-7-one 25

A mixture of the benzyl carbamate $24(400 \mathrm{mg}, 0.64 \mathrm{mmol})$ and 10% palladium-carbon (50 mg) in ethanol ($50 \mathrm{~cm}^{3}$) was stirred under a hydrogen atmosphere overnight. The mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure. The residue was dried in vacuo to a solid, which was crystallised from dichloromethane-diethyl ether to give the title compound $25(0.180 \mathrm{~g}, 57 \%)$ as colourless crystals; $\mathrm{mp} 225-227^{\circ} \mathrm{C}$ (Found: C, $51.5 ; \mathrm{H}, 5.8 ; \mathrm{N}, 2.9 . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{12}$ requires $\mathrm{C}, 51.7 ; \mathrm{H}, 6.0 ; \mathrm{N}, 2.9 \%)[a]_{\mathrm{D}}-59\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3380(\mathrm{~N}-\mathrm{H}), 1764$ (lactone $\mathrm{C}=\mathrm{O}$) and 1752 (ester $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.66-1.82(2 \mathrm{H}, \mathrm{m}, 4$ - and 8H^{β}), 2.01, 2.02, 2.08 and 2.12 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), 2.36-2.56 ($3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $4-\mathrm{and} 8-\mathrm{H}^{+}$), $3.22(1 \mathrm{H}$, br d, $J 4,2-\mathrm{H}$), 3.67 (1 H , ddd, $J 10,4$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.16(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 2.5 , $\left.6^{\prime}-\mathrm{H}\right), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.28(1 \mathrm{H}, \mathrm{brt}, J 4.5$, $3-\mathrm{H}), 4.67\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.74(1 \mathrm{H}$, br t, $J 4.5,5-\mathrm{H}), 4.99$ $\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.08\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$ and 5.23 ($\left.1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.7(2 \times), 20.8(2 \times)$, $30.9,37.6,45.2,54.7,61.8,68.5,70.8,72.0,72.7,73.6,75.4$, $96.9,169.3,169.5,170.4,170.7$ and $176.1 ; ~ m / z$ (FAB) 510 $\left(\mathrm{MNa}^{+}, 4 \%\right), 488\left(\mathrm{MH}^{+}, 50\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 10\right)$ and 169 (100).

4-Acetamido-1,6-di-O-acetyl-2,4-dideoxy-3-O-(2', $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-$O$-acetyl- β-d-glucopyranosyl)-5a-carba- β-d-lyxo-hexopyranose 8

Treatment of compound $\mathbf{2 5}$ ($80 \mathrm{mg}, 0.16 \mathrm{mmol}$) with lithium aluminium hydride ($100 \mathrm{mg}, 2.6 \mathrm{mmol}$) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ and subsequent acetylation as described for the preparation of compound $\mathbf{2 0}$ gave, after purification by flash chromatography [EtOAc-hexanes (4:1) as eluent], the title compound $\mathbf{8}(0.060 \mathrm{~g}$, 63%) as a colourless foam (Found: C, 52.4; H, 6.5; N, 2.3. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{15}$ requires $\left.\mathrm{C}, 52.5 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.3 \%\right)[a]_{\mathrm{D}}+2.7(c 1.0$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3431(\mathrm{~N}-\mathrm{H}), 2977,1756$ (ester $\mathrm{C}=\mathrm{O}$) and 1679 (amide C=O); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33-1.47(1 \mathrm{H}$,
m, $\left.5 \mathrm{a}-\mathrm{H}^{\text {ax }}\right), 1.57\left(1 \mathrm{H}, \mathrm{brdt}, J 13.5\right.$ and $\left.10,2-\mathrm{H}^{\text {ax }}\right), 1.76-1.91$ $\left(1 \mathrm{H}, \mathrm{m}, 5 \mathrm{a}-\mathrm{H}^{\mathrm{eq}}\right), 1.92-2.15\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\mathrm{eq}}\right.$ and $\left.5-\mathrm{H}\right), 1.98,2.00$, 2.03, 2.04, 2.05 and 2.08 ($6,3,3,3,3$ and 3 H , each s, $6 \times \mathrm{OAc}$ and NAc), $3.67\left(1 \mathrm{H}\right.$, ddd, $J 9.5,4$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 3.81(1 \mathrm{H}, \mathrm{dt}$, $J 10$ and $4.5,3-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{dd}, J 11$ and $8,6-\mathrm{H}), 4.14(1 \mathrm{H}$, dd, $J 12.5$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.19(1 \mathrm{H}, \mathrm{dd}, J 11$ and $6,6-\mathrm{H}), 4.26$ $\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4,6^{\prime}-\mathrm{H}\right), 4.43(1 \mathrm{H}, \mathrm{dt}, J 8.5$ and $4,4-\mathrm{H})$, $4.56\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.78(1 \mathrm{H}, \mathrm{tt}, J 10$ and $5,1-\mathrm{H}), 4.94(1 \mathrm{H}$, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.16(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,3^{\prime}-\mathrm{H}\right)$ and $5.60(1 \mathrm{H}, \mathrm{brd}$ d $J 8.5, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 20.6, 20.7, 20.8, 21.0, 21.2, 23.4, 28.8, 33.1, 36.2, 48.4, 61.5, $64.9,67.9,68.2,71.5,72.1,72.7,76.0,99.9,169.3,169.4,170.3$, $170.4,170.7$ and $171.0 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 1235\left(\mathrm{M}_{2} \mathrm{H}^{+}, 3 \%\right), 640$ $\left(\mathrm{MNa}^{+}, 4\right), 618\left(\mathrm{MH}^{+}, 39\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}^{+}, 79\right)$ and $169(100)$.
($1 R, 2 R, 3 R, 4 S$)-4-Hydroxy-5-oxo-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl-β-D-glucopyranosyloxy)cyclohexane-1,2-dicarboxylic anhydride 26
Cycloadduct $10(3.512 \mathrm{~g}, 5.99 \mathrm{mmol})$ was added to an excess of a freshly prepared solution of DMDO in dry acetone $\left(90 \mathrm{~cm}^{3}\right)$ and the resulting yellow solution was stirred at ambient temperature for 1 h . The solution was filtered and the filtrate was concentrated in vacuo. The residual solid was crystallised from acetone-diethyl ether to give the title compound 26 as colourless crystals ($2.704 \mathrm{~g}, 85 \%$); mp 168-170 ${ }^{\circ} \mathrm{C}$ (Found: C, 49.9; H, 4.85. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{15}$ requires $\left.\mathrm{C}, 49.8 ; \mathrm{H}, 4.9 \%\right)[a]_{\mathrm{D}}-91$ ($c 0.2$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3477 \mathrm{br}(\mathrm{O}-\mathrm{H}), 1866$ and 1780 (anhydride $\mathrm{C}=\mathrm{O}$) and 1747 (ester and ketone $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.99, 2.03, 2.09 and 2.12 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}$), 2.85-2.97 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 3.02-3.14 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $3.43-3.56$ ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H}$), 3.72 (1 H , ddd, $J 10,5$ and $2.5,5^{\prime}-\mathrm{H}$), 4.15 $\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.22$ and $4.26[2 \mathrm{H}$, overlapping $\mathrm{d}(J 2.5)$ and $\mathrm{dd}(J 12.5$ and 2.5$), 4-$ and $6^{\prime}-\mathrm{H}$, respectively], 4.53 $(1 \mathrm{H}, \mathrm{t}, J 3,3-\mathrm{H}), 4.64\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J 10$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.02\left(1 \mathrm{H}, \mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right)$ and $5.19\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-DMSO) 20.2, 20.4, 20.5, $33.6\left(6-\mathrm{CH}_{2}\right), 36.0$, $41.5,61.6\left(6^{\prime}-\mathrm{CH}_{2}\right), 68.1,70.3(2 \times), 70.6,71.5,79.3,100.5$, $168.8,169.2,169.5,170.0,171.5,173.3$ and 204.7 (5-CO); m / z (FAB) $531\left(\mathrm{MH}^{+}, 1 \%\right), 471\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 1\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 19\right), 205$ (7), 169 (29) and 154 (100).

($1 R, 2 R, 3 R, 4 R, 5 S$)-4,5-Dihydroxy-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl-$\beta$-D-glucopyranosyloxy)cyclohexane-1,2-dicarboxylic anhydride 30

A solution of acyloin $\mathbf{2 6}(1.022 \mathrm{~g}, 1.93 \mathrm{mmol})$ in glacial acetic acid ($30 \mathrm{~cm}^{3}$) was treated with sodium cyanoborohydride $(0.613 \mathrm{~g}, 9.75 \mathrm{mmol})$ and stirred overnight $(15 \mathrm{~h})$ at room temperature. The solvent was removed in vacuo and the residue was partitioned between dichloromethane ($50 \mathrm{~cm}^{3}$) and hydrochloric acid ($\approx 1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 100 \mathrm{~cm}^{3}$). The aqueous layer was extracted with dichloromethane $\left(2 \times 40 \mathrm{~cm}^{3}\right)$ and the combined organic layers were washed with water ($200 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave a residue, which was crystallised from dichloromethane-diethyl ether to yield the title compound $\mathbf{3 0}(0.578 \mathrm{~g}, 56 \%$) as colourless crystals; mp 187$190{ }^{\circ} \mathrm{C}$ (Found: C, $49.5 ; \mathrm{H}, 5.3 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{15}$ requires C, $49.6 ; \mathrm{H}$, $5.3 \%)[a]_{\mathrm{D}}+16\left(c 0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3522$ and 3490br ($\mathrm{O}-\mathrm{H}$), 1852 and 1780 (anhydride $\mathrm{C}=\mathrm{O}$) and 1749 and 1721 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.92-2.04(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}$) overlapping with $1.99,2.04,2.11$ and 2.14 (each 3 H , s, $4 \times \mathrm{OAc}), 2.18(1 \mathrm{H}, \mathrm{dt}, J 14$ and $4.5,6-\mathrm{H}), 2.69(1 \mathrm{H}$, br d, $J 2.5,4-\mathrm{OH}), 2.81(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.5,5-\mathrm{OH}), 3.29(1 \mathrm{H}, \mathrm{dt}, J 3.5$ and $9,1-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $4.5,2-\mathrm{H}), 3.64(1 \mathrm{H}$, ddd, $J 10,4$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.02-4.15\left(3 \mathrm{H}, \mathrm{m}, 4-, 5-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 4.24$ $(1 \mathrm{H}, \mathrm{t}, J 4,3-\mathrm{H}), 4.50$ and $4.52[2 \mathrm{H}$, overlapping dd ($J 12.5$ and 2) and d ($J 8$) , 6^{\prime} - and $1^{\prime}-\mathrm{H}$, respectively], $4.89(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.03\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right)$ and $5.14(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.3^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{FAB}) 555\left(\mathrm{MNa}^{+}, 2 \%\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 13\right), 176$ (8) and 136 (100).

($1 R, 2 R, 3 R, 4 S$)-4-Acetoxy-5-oxo-3-($2^{\prime}, 3^{\prime}, \mathbf{4}^{\prime}, 6^{\prime}$-tetra- O-acetyl- β -

 D-glucopyranosyloxy)cyclohexane-1,2-dicarboxylic anhydride 27Acyloin $26(1.060 \mathrm{~g}, 2.00 \mathrm{mmol})$ was added to a stirred solution of acetic anhydride ($5 \mathrm{~cm}^{3}$) and a catalytic amount of perchloric $\operatorname{acid}(70 \% \mathrm{v} / \mathrm{v} ; 2$ drops) cooled in an ice-bath. After 10 min , the mixture was poured into water ($60 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo $\left(<40^{\circ} \mathrm{C}\right)$. Crystallisation of the residue from dichloromethane-diethyl ether gave the title compound 27 ($0.958 \mathrm{~g}, 84 \%$) as colourless crystals; mp 172 $175{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.6 ; \mathrm{H}, 4.7 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{16}$ requires $\mathrm{C}, 50.4$; $\mathrm{H}, 4.9 \%)[\alpha]_{\mathrm{D}}-106\left(c 0.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1864$ and 1782 (anhydride $\mathrm{C}=\mathrm{O}$), 1752 (ester $\mathrm{C}=\mathrm{O}$) and 1734 (ketone $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.99,2.02,2.08,2.10$ and 2.13 (each $3 \mathrm{H}, \mathrm{s}, 5 \times \mathrm{OAc}), 2.95(1 \mathrm{H}$, dd, $J 15.5$ and $8.5,6-\mathrm{H}), 3.06$ (1 H , dd, $J 15.5$ and $10,6-\mathrm{H}), 3.48(1 \mathrm{H}$, dd, $J 10.5$ and 3.5 , $2-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{dt}, J 8.5$ and $10,1-\mathrm{H}), 3.76(1 \mathrm{H}$, ddd, $J 10,5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.13\left(1 \mathrm{H}\right.$, dd, $J 12.5$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.23(1 \mathrm{H}$, dd, $J 12.5$ and $\left.5.5,6^{\prime}-\mathrm{H}\right), 4.51(1 \mathrm{H}$, dd, J 3.5 and $2.5,3-\mathrm{H}), 4.65$ $\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}\right.$, dd, $J 10$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}$, $\left.\mathrm{t}, J 10,4^{\prime}-\mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$ and $5.34(1 \mathrm{H}, \mathrm{d}, J 2.5$, $4-\mathrm{H}) ; m / z(\mathrm{FAB}) 573\left(\mathrm{MH}^{+}, 2 \%\right), 513\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 3\right)$, $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 62\right), 169(94)$ and 136 (100).

Sodium cyanoborohydride reduction of ketone 27

A solution of ketone $27(2.57 \mathrm{~g}, 4.48 \mathrm{mmol})$ in glacial acetic acid $\left(40 \mathrm{~cm}^{3}\right)$ was treated with sodium cyanoborohydride ($1.55 \mathrm{~g}, 24.7 \mathrm{mmol}$) and stirred overnight. Work-up, as employed for the preparation of lactone 14, gave a $75: 25$ mixture of lactonic acids 28 and $29(1.97 \mathrm{~g})$. Slow crystallisation of the residue from dichloromethane-diethyl ether gave ($1 R$, $2 R, 3 R, 4 R, 5 S)$-4-acetoxy-7-oxo-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl- β -D-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octane-2-carboxylic acid 28 as colourless crystals ($1.33 \mathrm{~g}, 52 \%$); mp $111-120^{\circ} \mathrm{C}$ (Found: C, 50.2; H, 5.3. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{16}$ requires C, 50.2; H, 5.3\%) $[a]_{\mathrm{D}}-29\left(c 0.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-2700 \mathrm{br}$ ($\mathrm{O}-\mathrm{H}$), 1788 (lactone $\mathrm{C}=\mathrm{O}$) and 1743 (ester and acid $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.99,2.01,2.05,2.09$ and 2.11 (each 3 H , s, $5 \times \mathrm{OAc}), 2.16\left(1 \mathrm{H}, \mathrm{d}, J 12.5,8-\mathrm{H}^{\beta}\right), 2.44(1 \mathrm{H}, \mathrm{dt}, J 12$ and 6 , $\left.8-\mathrm{H}^{u}\right), 3.06(1 \mathrm{H}, \mathrm{br}$ d, $J 5.5,1-\mathrm{H}), 3.12(1 \mathrm{H}$, dd, $J 4.5$ and 1.5 , $2-\mathrm{H}), 3.72\left(1 \mathrm{H}, \mathrm{dt}, J 9.5\right.$ and $\left.3.5,5^{\prime}-\mathrm{H}\right), 4.23(2 \mathrm{H}, \mathrm{d}, J 3.5$, $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.33(1 \mathrm{H}$, br d, $J 4.5,3-\mathrm{H}), 4.72\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.76$ $(1 \mathrm{H}, \mathrm{t}, J 4.5,5-\mathrm{H}), 4.94\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.08(1 \mathrm{H}$, $\left.\mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.16\left(1 \mathrm{H}, \mathrm{t}, J 9.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$ and $5.46(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 4.5,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.5,20.6,20.7(2 \times), 20.9$, $32.6\left(8-\mathrm{CH}_{2}\right), 35.7,47.2,61.8\left(6^{\prime}-\mathrm{CH}_{2}\right), 68.5,68.9,70.9,71.9$, $72.8,74.7,76.9,102.0,168.7,169.4,169.6,170.8,170.9,171.3$ and 175.1; m/z (FAB) $597\left(\mathrm{MNa}^{+}, 3 \%\right), 575\left(\mathrm{MH}^{+}, 3\right), 515$ $\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 1\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 30\right), 169(63)$ and 136 (100).

Slow crystallisation of the mother liquor from dichloro-methane-diethyl ether-hexanes gave $(1 R, 2 R, 4 S, 7 R, 8 S)-8$ -acetoxy- 6 -oxo- $7-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra-O-acetyl- β-D-glucopyranosyl-oxy)-5-oxabicyclo[2.2.2]octane-2-carboxylic acid $\dagger \mathbf{2 9}$ as colourless crystals $(0.237 \mathrm{~g}, 9 \%)$; mp 203-204 ${ }^{\circ} \mathrm{C}$ (Found: C, 49.9 ; H, 5.5. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{16}$ requires C, $50.2 ; \mathrm{H}, 5.3 \%$) $[a]_{\mathrm{D}}-59$ (c 0.3 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3378 \mathrm{br}(\mathrm{O}-\mathrm{H})$ and 1750 (lactone, ester and acid $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.00,2.03,2.06,2.11$ and 2.13 (each $3 \mathrm{H}, \mathrm{s}, 5 \times \mathrm{OAc}), 2.00-2.35\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.96$ (1 H, ddd, $J 10.5,7$ and $1.5,2-\mathrm{H}), 3.30-3.34(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.74$ ($1 \mathrm{H}, \mathrm{dt}, J 10$ and $3.5,5^{\prime}-\mathrm{H}$), 4.13 (1 H , br t, $J 2.5,7-\mathrm{H}$), 4.20 $\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2.5,6^{\prime}-\mathrm{H}\right), 4.26(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 3.5 , $\left.6^{\prime}-\mathrm{H}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, J\right.$ 8, $\left.1^{\prime}-\mathrm{H}\right), 4.77-4.83(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.97$ (1 H, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.05-5.13\left(2 \mathrm{H}, \mathrm{m}, 8-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $5.22\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 20.6,20.7,20.8$, $23.5,36.8,42.1,61.6,68.2,70.7,72.0,72.7,77.4,97.9,169.0$, 169.3, 169.5, 169.7, 170.5, 170.9 and $174.8 ; \mathrm{m} / \mathrm{z}$ (FAB) 597 $\left(\mathrm{MNa}^{+}, 4 \%\right), 575\left(\mathrm{MH}^{+}, 6\right), 515\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 1\right), 331$ $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 49\right), 169(78)$ and 136 (100).
($1 R, 2 R, 3 R, 4 R, 5 S$)-4-Acetoxy-7-oxo-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O -acetyl- β-D-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octane-2carbonyl chloride 32

To a solution of lactonic acid $28(1.119 \mathrm{~g}, 1.95 \mathrm{mmol})$ in dry dichloromethane ($50 \mathrm{~cm}^{3}$) were added oxalyl dichloride $\left(0.50 \mathrm{~cm}^{3}, 5.73 \mathrm{mmol}\right)$ and a catalytic amount of dry DMF (2 drops). Stirring was continued until the evolution of bubbles ceased (30 min). The mixture was poured into water $\left(100 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $\left(2 \times 30 \mathrm{~cm}^{3}\right)$ and the combined extracts were washed with water $\left(200 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo ($<30^{\circ} \mathrm{C}$). Crystallisation of the residue from dichloromethane-diethyl ether gave the title compound 32 as colourless crystals ($0.950 \mathrm{~g}, 82 \%$); mp $160-$ $167^{\circ} \mathrm{C}$ (decomp.) (Found: C, $48.4 ; \mathrm{H}, 4.8 ; \mathrm{Cl}, 5.9 . \mathrm{C}_{24} \mathrm{H}_{29} \mathrm{ClO}_{15}$ requires C, 48.6; H, 4.9; Cl, 6.0\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1818$ (acyl chloride $\mathrm{C}=\mathrm{O}$), 1790 (lactone $\mathrm{C}=\mathrm{O}$) and 1758br (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.98,2.01,2.05,2.09$ and 2.14 (each 3 H , $\mathrm{s}, 5 \times \mathrm{OAc}), 1.98-2.14\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\beta}\right), 2.40-2.50\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\alpha}\right)$, $3.05(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5,1-\mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{dd}, J 4.5$ and $2,2-\mathrm{H}), 3.74$ (1 H , ddd, $J 9.5,4$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 4.21(1 \mathrm{H}$, dd, $J 12.5$ and 4, $\left.6^{\prime}-\mathrm{H}\right), 4.28\left(1 \mathrm{H}\right.$, dd, $J 12.5$ and $\left.3,6^{\prime}-\mathrm{H}\right), 4.46(1 \mathrm{H}, \mathrm{br}$ d, $J 4$, $3-\mathrm{H}), 4.71$ and $4.75[2 \mathrm{H}$, overlapping $\mathrm{d}(J 8)$ and $\mathrm{t}(J 4.5)$, 1^{\prime} - and $5-\mathrm{H}$, respectively], $4.99\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.08$ $\left(1 \mathrm{H}, \mathrm{t}, J 9.5,4^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$ and $5.66(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 4.5,4-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 595$ and 593 (each $\mathrm{MH}^{+}, 0.5$ and 2%), $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 32\right), 169(67)$ and $154(100)$.

(1R,4S,5S)-4-Acetoxy-7-oxo-6-oxabicyclo[3.2.1]oct-2-ene-2carbonyl azide 31

Sodium azide ($0.338 \mathrm{~g}, 5.20 \mathrm{mmol}$) was added to a stirred solution of acid chloride $32(0.383 \mathrm{~g}, 0.646 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ and the resulting reaction was monitored by TLC until complete ($\approx 4 \mathrm{~h}$). The reaction mixture was then poured into water ($100 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($2 \times 50 \mathrm{~cm}^{3}$), and the combined extracts were washed with water $\left(200 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The residue was purified by silica gel column chromatography [gradient elution; EtOAc-hexanes $(1: 1 \rightarrow 7: 3)$] to give two fractions.

The first fraction was the title compound $\mathbf{3 1}(0.115 \mathrm{~g}, 71 \%)$ as a colourless solid; $\mathrm{mp} 90-91^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 47.8 ; \mathrm{H}, 3.5 ; \mathrm{N}, 17.0 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $47.8 ; \mathrm{H}, 3.6 ; \mathrm{N}$, $16.7 \%)[a]_{\mathrm{D}}+271\left(c 0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2142\left(\mathrm{~N}_{3}\right)$, 1782 (lactone $\mathrm{C}=\mathrm{O}$), 1732 (ester $\mathrm{C}=\mathrm{O}$) and 1680 (unsaturated acyl azide $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.04\left(1 \mathrm{H}, \mathrm{d}, J 12,8-\mathrm{H}^{\beta}\right)$, $2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.49\left(1 \mathrm{H}, \mathrm{dt}, J 12\right.$ and $5,8-\mathrm{H}^{\mathrm{o}}$), $3.76(1 \mathrm{H}$, d, $J 4.5,1-\mathrm{H}), 4.74-4.80(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{t}, J 3,4-\mathrm{H})$ and $6.87(1 \mathrm{H}$, ddd, $J 3.5,1.5$ and $1,3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $20.8,30.7,36.6,65.7,75.2,135.2,135.8,169.2,169.6$ and 174.0; $\mathrm{m} / z(\mathrm{FAB}) 252\left(\mathrm{MH}^{+}, 17 \%\right), 167(10)$ and 136 (100).

The second fraction was a mixture of the α - and β-anomer of tetra- O-acetyl-d-glucopyranose ($0.219 \mathrm{~g}, 97 \%$) as a clear syrup.

($1 R, 2 R, 3 R, 4 R, 5 S)$-4-Acetoxy-7-oxo-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O -acetyl- β-D-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octane-2carbonyl azide 33

Sodium azide ($0.544 \mathrm{~g}, 8.37 \mathrm{mmol}$) was added to a solution of acid chloride $32(0.528 \mathrm{~g}, 0.891 \mathrm{mmol})$ in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ and the resulting mixture was stirred until starting material could not be detected by TLC ($\approx 2 \mathrm{~h}$). Water $\left(100 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with dichloromethane $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water ($200 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Crystallisation of the residue from dichloromethane-diethyl ether gave the title compound 33 ($0.493 \mathrm{~g}, 92 \%$) as colourless crystals; mp 160$209^{\circ} \mathrm{C}$ (decomp.) $[a]_{\mathrm{D}}-41\left(c 0.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $2154\left(\mathrm{~N}_{3}\right), 1789$ (lactone $\mathrm{C}=\mathrm{O}$) and 1755 (ester and azide $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.99,2.01,2.05$ and 2.09 (each 3 H , s,
$4 \times \mathrm{OAc}), 2.11$ and $2.13[4 \mathrm{H}$, overlapping s and $\mathrm{d}(J 12.5)$, OAc and $8-\mathrm{H}^{\beta}$, respectively], $2.38-2.50\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\mathrm{d}}\right), 3.01-3.08$ $(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H}), 3.72\left(1 \mathrm{H}\right.$, ddd, $J 10,4$ and $\left.3,5^{\prime}-\mathrm{H}\right), 4.18-$ $4.29\left(3 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{2}\right.$ and $\left.3-\mathrm{H}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right), 4.74(1 \mathrm{H}$, $\mathrm{t}, J 5,5-\mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.08(1 \mathrm{H}, \mathrm{t}, J 9.5$, $\left.4^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$ and $5.48(1 \mathrm{H}$, br d, $J 4.5,4-\mathrm{H})$; m / z (FAB) $600\left(\mathrm{MH}^{+}, 7 \%\right), 594$ (2), $331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 52\right), 169$ (64) and 139 (100).

Benzyl ($1 R, 2 R, 3 R, 4 R, 5 S$)-4-acetoxy-7-oxo-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-$O$-acetyl- β-D-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octane-2carbamate 34

A mixture of dry benzyl alcohol ($0.19 \mathrm{~cm}^{3}, 1.84 \mathrm{mmol}$) and acyl azide $33(0.087 \mathrm{~g}, 0.145 \mathrm{mmol})$ in dry benzene ($30 \mathrm{~cm}^{3}$) was heated under reflux for 48 h . Evaporation of the mixture in vacuo and purification of the residue by silica gel column chromatography [gradient elution; EtOAc-hexanes ($2: 3 \rightarrow 4: 1$)] gave the title compound $34(0.084 \mathrm{~g}, 85 \%)$ as a clear oil (Found: MH^{+}, 680.2178. $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{NO}_{16}$ requires MH^{+}, 680.2191); $[a]_{\mathrm{D}}-30\left(c 0.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3402(\mathrm{~N}-\mathrm{H}), 1785$ (lactone $\mathrm{C}=\mathrm{O}$), 1754 (ester $\mathrm{C}=\mathrm{O}$) and 1723 and 1707 (carbamate $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.88,1.97,2.01,2.08$ and 2.10 (each 3 H , s, $5 \times \mathrm{OAc}$), $2.27\left(1 \mathrm{H}, \mathrm{d}, J 12.5,8-\mathrm{H}^{\beta}\right), 2.42(1 \mathrm{H}, \mathrm{br}$ $\mathrm{dt}, J 12$ and $\left.6,8-\mathrm{H}^{\alpha}\right), 2.62(1 \mathrm{H}$, dd, $J 5.5$ and $2.5,1-\mathrm{H}), 3.65$ ($1 \mathrm{H}, \mathrm{dt}, J 9.5$ and $3.5,5^{\prime}-\mathrm{H}$), $3.95(1 \mathrm{H}, \mathrm{br}$ d, $J 4.5,3-\mathrm{H}), 4.20$ and 4.24 [3 H , overlapping d (separation 3.5) and ddd ($J 10,5$ and 2.5), $6^{\prime}-\mathrm{H}_{2}$ and 2-H, respectively], $4.55\left(1 \mathrm{H}, \mathrm{d}, J 8,1^{\prime}-\mathrm{H}\right)$, $4.73(1 \mathrm{H}, \mathrm{t}, J 5,5-\mathrm{H}), 4.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8.5,2^{\prime}-\mathrm{H}\right), 5.03-5.19$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.50(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.5,4-\mathrm{H})$, $5.58(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10, \mathrm{NH})$ and $7.32-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 20.4, 20.7, 20.8, 20.9, 31.8, 41.4, 51.0, 61.7, 67.5, 68.2, 69.2, 71.7, 72.2, 72.9, 74.9, 78.9, 102.7, 128.5, 128.7, 135.9, 155.6, 168.9, 169.2, 169.3, 170.4, 170.8 and $175.2 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB})$ $702\left(\mathrm{MNa}^{+}, 1 \%\right), 680\left(\mathrm{MH}^{+}, 4\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 13\right), 169(27)$ and 91 (100).
($1 R, 2 R, 3 R, 4 R, 5 S)$-4-Acetoxy-2-amino-3-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O -acetyl- β-d-glucopyranosyloxy)-6-oxabicyclo[3.2.1]octan-7-one 35

A mixture of the benzyl carbamate $34(0.075 \mathrm{~g}, 0.110 \mathrm{mmol})$ and 10% palladium-carbon ($0.033 \mathrm{~g}, 0.45$ mass equiv.) in ethanol $\left(25 \mathrm{~cm}^{3}\right)$ was stirred under an atmosphere of hydrogen for 21 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad, which was then washed with dichloromethane ($50 \mathrm{~cm}^{3}$). The combined filtrate and washings were concentrated in vacuo. The residue was dissolved in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ and the solution was extracted with hydrochloric acid ($\approx 1 \mathrm{~mol} \mathrm{dm}^{-3} ; 3 \times 30 \mathrm{~cm}^{3}$). The combined aqueous layers were basified using solid sodium hydrogen carbonate and extracted with dichloromethane $\left(2 \times 80 \mathrm{~cm}^{3}\right)$. The organic extracts were washed with water (200 cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed. Crystallisation of the residue from dichloromethane-diethyl ether gave the title compound $35(0.033 \mathrm{~g}, 55 \%)$ as colourless crystals; mp 195$205^{\circ} \mathrm{C}$ (Found: C, $50.6 ; \mathrm{H}, 5.5 ; \mathrm{N}, 2.5 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{14}$ requires C, $50.6 ; \mathrm{H}, 5.7 ; \mathrm{N}, 2.6 \%)[a]_{\mathrm{D}}-42\left(c 0.2\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}(\mathrm{KBr})$) $\mathrm{cm}^{-1} 3419(\mathrm{~N}-\mathrm{H}), 1775$ (lactone $\mathrm{C}=\mathrm{O}$) and 1746 (ester $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.99,2.01,2.07,2.08$ and 2.09 (each 3 H , $\mathrm{s}, 5 \times \mathrm{OAc}), 2.14\left(1 \mathrm{H}, \mathrm{d}, J 11.5,8-\mathrm{H}^{\beta}\right), 2.28-2.43\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}^{\alpha}\right.$ and $1-\mathrm{H}), 3.28(1 \mathrm{H}$, dd, $J 5$ and $2,2-\mathrm{H}), 3.69(1 \mathrm{H}$, ddd, $J 9.5$, 4.5 and $\left.3,5^{\prime}-\mathrm{H}\right), 4.00(1 \mathrm{H}$, br d, $J 5,3-\mathrm{H}), 4.19$ and $4.24[2 \mathrm{H}$, overlapping dd ($J 12$ and 3) and dd ($J 12$ and 4.5), $6^{\prime}-\mathrm{H}_{2}$], 4.72 and 4.76 [2 H , overlapping $\mathrm{br} \mathrm{t}(J 5.5)$ and $\mathrm{d}(J 8), 5-$ and $1^{\prime}-\mathrm{H}$, respectively], $5.03\left(1 \mathrm{H}\right.$, dd, $J 9.5$ and $\left.8,2^{\prime}-\mathrm{H}\right), 5.09(1 \mathrm{H}, \mathrm{t}$, $\left.J 9.5,4^{\prime}-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{t}, J 9.5,3^{\prime}-\mathrm{H}\right)$ and $5.40(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $1.5,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.6,20.7,20.8,31.9,45.2$, $52.9,61.8,68.4,69.9,71.4,72.0,72.9,75.0,79.1,102.2,168.8$, 169.0, 169.3, 170.3, 170.7 and 175.7; $m / z(\mathrm{FAB}) 1091\left(\mathrm{M}_{2} \mathrm{H}^{+}\right.$,
$2 \%), 568\left(\mathrm{MNa}^{+}, 5\right), 546\left(\mathrm{MH}^{+}, 26\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 7\right)$ and 154 (100).

4-Acetamido-1,2,6-tri-O-acetyl-4-deoxy-3-O-(2', $\mathbf{3}^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-$O$-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-5a-carba- $\boldsymbol{\beta}$-L-galactopyranose 9

Lithium aluminium hydride ($0.152 \mathrm{~g}, 4.01 \mathrm{mmol}$) was carefully added to a solution of amine $35(0.078 \mathrm{~g}, 0.143 \mathrm{mmol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ and the resulting mixture was heated under reflux for 36 h . The work-up procedure and subsequent acetylation protocol was that used for the preparation of compound $\mathbf{1 6}$. Purification of the residue obtained by silica gel column chromatography [EtOAc-hexanes $(9: 1)$ as eluent] gave the title compound 9 as a colourless syrup $(0.059 \mathrm{~g}, 61 \%) ; R_{\mathrm{f}} 0.6$ (EtOAc) (Found: $\mathrm{MH}^{+}, 676.2455 . \mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{17}$ requires MH^{+}, $676.2453)[a]_{\mathrm{D}}-20\left(c 0.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3450(\mathrm{~N}-$ H), 1744 (ester $\mathrm{C}=\mathrm{O}$) and 1688 and 1671 (amide $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.36\left(1 \mathrm{H}, \mathrm{br}\right.$ q $\left., J 12.5,5 \mathrm{a}-\mathrm{H}^{\mathrm{ax}}\right), 1.98,2.01,2.03$, 2.06 and $2.08(3,6,6,6$ and 3 H , each s, $7 \times \mathrm{OAc}$ and NAc) overlapping with $2.01-2.08\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.5 \mathrm{a}-\mathrm{H}^{\mathrm{eq}}\right), 3.72(1 \mathrm{H}$, ddd, $J 10,4.5$ and $\left.2.5,5^{\prime}-\mathrm{H}\right), 3.78-3.87(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 6-\mathrm{H})$, $4.06\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.2,6^{\prime}-\mathrm{H}\right), 4.16(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and 7 , $6-\mathrm{H}), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4.5,6^{\prime}-\mathrm{H}\right), 4.61$ and $4.60-4.67$ [2 H , overlapping $\mathrm{d}\left(J 7.5\right.$) and $\mathrm{m}, 1^{\prime}$ - and $4-\mathrm{H}$, respectively], 4.79-4.91 ($2 \mathrm{H}, \mathrm{m}, 1-$ and $2^{\prime}-\mathrm{H}$), 5.06, 5.09 and $5.16[3 \mathrm{H}$, overlapping $\mathrm{t}(J 10), \mathrm{t}(J 9.5)$ and $\mathrm{t}(J 9), 4^{\prime}-, 2$ - and $3^{\prime}-\mathrm{H}$, respectively] and $5.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.5, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 20.6, 20.7, 20.8, 21.0, 23.4, 27.5, 35.5, 46.8, 61.8, 64.2, 68.1, $70.7,71.0,71.6,71.8,73.0,98.9,169.5(2 \times), 170.1(2 \times), 170.3$, $170.5(2 \times)$ and $170.8 ; m / z(\mathrm{FAB}) 698\left(\mathrm{MNa}^{+}, 1 \%\right), 676\left(\mathrm{MH}^{+}\right.$, 10), $616\left(\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 6\right), 331\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9}{ }^{+}, 50\right), 169(95)$ and 136 (100).

References

1 Preliminary communication: D. S. Larsen, N. S. Trotter and R. J. Stoodley, Tetrahedron Lett., 1993, 34, 8151.

2 R. C. Gupta, P. A. Harland and R. J. Stoodley, Tetrahedron, 1984, 40, 4657.
3 R. C. Gupta, C. M. Raynor, R. J. Stoodley, A. M. Z. Slawin and D. J. Williams, J. Chem. Soc., Perkin Trans. I, 1988, 1773.

4 R. C. Gupta, D. S. Larsen, R. J. Stoodley, A. M. Z. Slawin and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1989, 739; D. S. Larsen and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1989, 1841; D. S. Larsen and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1990, 1339; B. Beagley, D. S. Larsen, R. G. Pritchard and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1990, 3113.

5 W. D. Edwards, R. C. Gupta, C. M. Raynor and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1991, 1913.

6 D. S. Larsen and R. J. Stoodley, Tetrahedron, 1990, 46, 4711.
7 I. H. Aspinall, P. M. Cowley, G. Mitchell and R. J. Stoodley, J. Chem. Soc., Chem. Commun., 1993, 1179; I. H. Aspinall, P. M. Cowley, G. Mitchell, C. M. Raynor and R. J. Stoodley, J. Chem. Soc., Perkin Trans. 1, 1999, 2591.

8 I. H. Aspinall, P. M. Cowley, R. J. Stoodley and G. Mitchell, Tetrahedron Lett., 1994, 35, 3397; P. M. Cowley, R. J. Stoodley and G. Mitchell, Tetrahedron Lett., 1994, 35, 7853.

9 M. Helliwell, I. M. Phillips, R. G. Pritchard and R. J. Stoodley, Tetrahedron Lett., 1999, 40, 8651.
10 J. H. Musser, Annu. Rep. Med. Chem., 1992, 27, 301.
11 Carbohydrates-Synthetic Methods and Applications in Medicinal Chemistry, ed. H. Ogura, A. Hasegawa and T. Suami, Kodansha, Tokyo and VCH, Weinheim, 1992.
12 Dictionary of Antibiotics and Related Substances, ed. B. W. Bycroft, Chapman and Hall, London and New York, 1988, p. 722.
13 T. Suami, Pure Appl. Chem., 1987, 59, 1509; T. Suami and S. Ogawa, Adv. Carbohydr. Chem. Biochem., 1990, 48, 21; T. Suami, Top. Curr. Chem., 1990, 154, 257; T. Suami, ref. 11, p. 136.
14 S. Ogawa, Y. Shibata, N. Chida and T. Suami, Bull. Chem. Soc. Jpn., 1983, 56, 494.
15 W. Adam, J. Bialas and L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377.

16 D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, UK, 2nd edn., 1980.

[^0]: \dagger Non-systematic numbering for the bicyclic ring.

[^1]: \ddagger The ratio was determined on the methyl esters obtained from the acids 21 and 22 by the action of ethereal diazomethane.

